0%

How we build payments systems at Coinbase

2021年2月11日 5分读完
新闻文章的横幅图片

Correctness

Payments are one of the areas that have zero tolerance for any errors. Ensuring the product flows and features work as expected is of the utmost importance. Any payment bugs that are related to correctness would cause an unacceptable customer experience. When an error occurs it needs to be corrected immediately. Further, the process to remediate such mistakes is time consuming, and usually is complicated due to various legal and compliance constraints.

In our systems, we have built multiple tiers to ensure correctness. These span from unit testing in implementation, production test/bug bash for any feature update or flow changes, monitoring on various error rates, authorization rates, and success rates; to anomaly detection and alerting set up to capture anything that could go wrong as regression due to new changes. Close support with the product loop also helps surface any correctness related issues.

Other than logical correctness, the correctness of system behavior could also be expanded to how exceptions are handled. We discuss some of these concepts in the following sections.

Resiliency

The second important aspect of correctness is how resilient the system is to external issues and bugs. For example, one of the most important concepts in the payments domain is called idempotency. This is necessary because if there is a retry initiative for any failed transaction, we must ensure the retry doesn’t result in any type of double charge.

Usually, an end-to-end payments system would span the client-side, to the backend services, to the external partners where the payments transactions are handled on the backside. All transactions must be kept as atomic as possible. But some client-to-service or internal-to-external requests could be long, especially in timeout or failure cases, and we can only confirm the final results (success/failure) after minutes or hours later. So in some of those cases, we will initiate retries from upstream to downstream. If the whole end-to-end is not handling retry properly, i.e., the system is idempotent, it is inevitable to get into a situation of processing the same transaction twice, thus causing double charge or double payout.

Once the idempotent quality is ensured, we also need to make sure to have the right design in place for auto-retry and user messaging, etc.

Recoverability and traceability

Another important thing to consider when having multiple layers from upstream to downstream is the data record. i.e., how we design data models, data recording, and propagation to ensure if any issues arise, we can do our best to recover the system state and trace what happened.

Payments always use both cached data for speed and persistent data for recoverability. Whenever there is caching, then it is important to have the right strategy to guide as to when to write to which data layer. I.e. how we do data propagation when there is transient disagreement, how to identify the source of truth, and how we design the whole recovery process to ensure eventual consistency.

Another key to capturing data properly is to keep a reliable record such that we can always trace what exactly happened. This is needed in different contexts including financial auditing, event logging, issue investigation need, etc.

Availability and integration velocity

When it comes to customer experience, the first thing users care about is whether the service is available for them to use. But the technical stack of a payment system consists of multiple layers. We therefore try to add as much redundancy as possible by duplication of critical components to increase reliability of our systems.

Another important aspect of an international payments system is geographical coverage. The speed at which we can add new payment methods to new jurisdictions is crucial. To accelerate integration speed, it is important to have the right abstractions and abstraction layers to capture but also hide specific details. For example, a well-designed abstraction is when it can handle both push payments and pull payments; be used to represent both pay-in and payout; charge and refund; sync payment and async payment, etc.

System maintainability and scalability

Keeping the payment systems maintainable and scalable is of the utmost importance. The KISS principle states “Wherever possible, complexity should be avoided in a system — as simplicity guarantees the greatest levels of user acceptance and interaction.” This principle is especially critical when it comes to payment system design. Any over-complicated logic or knotty code can cause mysterious bugs in the future.

We also lean towards maintaining high-quality runbooks and documents to capture all design considerations and tradeoffs. In our experience, the same design choices can become debatable in the future and for this reason, documentation is invaluable. Most of the design patterns in our systems are dependent and interact with each other. Each of these components are critical to completing the system. Having full documentation helps new people understand, ramp up, and align with the overall design methodologies.

Above and beyond

Although precision is important for building reliable payment systems, we must also look beyond. Empowering customers to move money with a delightful experience is more than just making the transactions safe and correct. End-to-end payment systems are complex and need to incorporate compliance, security, fraud, and other factors. This blog only touches on some of the basic and high-level concepts. However in the future we will share more articles discussing in-depth components of our payment systems.

If you are interested in solving complex technical challenges like this, Coinbase is hiring.

was originally published in The Coinbase Blog on Medium, where people are continuing the conversation by highlighting and responding to this story.

热门新闻

How to Set Up and Use Trust Wallet for Binance Smart Chain
#Bitcoin#Bitcoins#Config+2 更多标签

How to Set Up and Use Trust Wallet for Binance Smart Chain

Your Essential Guide To Binance Leveraged Tokens

Your Essential Guide To Binance Leveraged Tokens

How to Sell Your Bitcoin Into Cash on Binance (2021 Update)
#Subscriptions

How to Sell Your Bitcoin Into Cash on Binance (2021 Update)

What is Grid Trading? (A Crypto-Futures Guide)

What is Grid Trading? (A Crypto-Futures Guide)

马上免费使用Cryptohopper进行交易!

免费使用——无需信用卡

开始吧
Cryptohopper appCryptohopper app

免责声明:Cryptohopper并非受监管机构。加密货币的机器人交易存在大量风险,过去的业绩表现并不能预示未来的结果。产品截图中展示的利润仅供参考,可能有所夸大。只有在您具备充足的知识或寻求了专业财务顾问的指导后,才应进行机器人交易。在任何情况下,Cryptohopper均不对任何人或实体因使用我们的软件进行交易而产生的全部或部分损失或损害,或任何直接、间接、特殊、后果性或附带的损害承担责任。请注意,Cryptohopper社交交易平台上的内容由Cryptohopper社区成员生成,并不代表Cryptohopper或其代表的建议或推荐。市场上展示的利润并不能预示未来的结果。使用Cryptohopper的服务即表示您承认并接受加密货币交易的固有风险,并同意免除Cryptohopper因您的任何责任或损失的责任。在使用我们的软件或进行任何交易活动之前,务必审阅并理解我们的服务条款和风险披露政策。请根据您的具体情况咨询法律和金融专业人士,获取个性化的建议。

©2017 - 2024 版权归属于Cryptohopper™ -版权所有。